Heliyon (Nov 2023)

C-kitpos cells in the human left atrial appendage

  • Lea Schwarzkopf,
  • Petra Büttner,
  • Karl Scholtyssek,
  • Thomas Schröter,
  • Ruth Hiller,
  • Gerhard Hindricks,
  • Andreas Bollmann,
  • Ulrich Laufs,
  • Laura Ueberham

Journal volume & issue
Vol. 9, no. 11
p. e21268

Abstract

Read online

Background: Subpopulations of myocardial c-kitpos cells have the ability to stimulate regeneration in ischemic heart disease by paracrine effects. The left atrial appendage (LAA), which is easy accessible during cardiac surgery, may represent a perfect source for c-kitpos cell extraction for autologous cell therapies in the living human. So far, frequency and distribution of c-kitpos cells in LAA are unknown. Methods: LAAs of patients who underwent cardiac surgery due to coronary artery disease (coronary artery bypass graft, CABG), valvular heart disease or both and of two body donors were examined. Tissue was fixed in 4 % paraformaldehyde, embedded in paraffin, dissected in consecutive sections and stained for c-kitpos cells. In parallel, grade of fibrosis, amount of fat per section and cells positive for mast cell tryptase were examined. Results: We collected 27 LAAs (37.0 % female, mean left ventricular ejection fraction 50.4 %, 63.0 % persistent atrial fibrillation (AF)). Most of the patients underwent combined CABG and valve surgery (51.9 %). C-kitpos cells were detected in 3 different regions: A) Attached to the epicardial fat layer, B) close to vascular structures and C) between cardiomyocytes. C-kitpos cells ranged from 0.05 c-kitpos cells per mm2 to 67.5 c-kitpos cells per mm2. We found no association between number of c-kitpos cells and type of AF, amount of fibrosis or amount of fat. Up to 72 % of c-kitpos cells also showed a positive staining for mast cell tryptase. Conclusion: C-kitpos cells are frequent in LAAs of cardiovascular patients with a rather homogenous distribution throughout the LAA. The LAA can therefore be considered as a source for extraction of a reasonable quantity of autologous cardiac progenitor cells in the living human patient.

Keywords