BMC Pulmonary Medicine (Oct 2023)
Prevalence and significance of clonal hematopoiesis of indeterminate potential in lung transplant recipients
Abstract
Abstract Background Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition of somatic mutations that leads to an expanded blood cell clone, has been associated with development of a pro-inflammatory state. An enhanced or dysregulated inflammatory response may contribute to rejection after lung transplantation, however the prevalence of CHIP in lung recipients and influence of CHIP on allograft outcomes is unknown. Methods We analyzed whole-exome sequencing data in 279 lung recipients to detect CHIP, defined by pre-specified somatic mutations in 74 genes known to promote clonal expansion of hematopoietic stem cells. We compared the burden of acute rejection (AR) over the first post-transplant year in lung recipients with vs. without CHIP using multivariable ordinal regression. Multivariate Cox proportional hazards models were used to assess the association between CHIP and CLAD-free survival. An exploratory analysis evaluated the association between the number of CHIP-associated variants and chronic lung allograft dysfunction (CLAD)-free survival. Results We detected 64 CHIP-associated mutations in 45 individuals (15.7%), most commonly in TET2 (10.8%), DNMT3A (9.2%), and U2AF1 (9.2%). Patients with CHIP tended to be older but did not significantly differ from patients without CHIP in terms of race or native lung disease. Patients with CHIP did not have a higher incidence of AR over the first post-transplant year (p = 0.45) or a significantly increased risk of death or CLAD (adjusted HR 1.25, 95% CI 0.88–1.78). We did observe a significant association between the number of CHIP variants and CLAD-free survival, specifically patients with 2 or more CHIP-associated variants had an increased risk for death or CLAD (adjusted HR 3.79, 95% CI 1.98–7.27). Conclusions Lung recipients have a higher prevalence of CHIP and a larger variety of genes with CHIP-associated mutations compared with previous reports for the general population. CHIP did not increase the risk of AR, CLAD, or death in lung recipients.