Journal of Lipid Research (Dec 2006)

Ceramide structural features required to stimulate ABCA1-mediated cholesterol efflux to apolipoprotein A-I

  • Amy B. Ghering,
  • W. Sean Davidson

DOI
https://doi.org/10.1194/jlr.m600380-jlr200
Journal volume & issue
Vol. 47, no. 12
pp. 2781 – 2788

Abstract

Read online

Ceramide is a component of the sphingomyelin cycle and a well-established lipid signaling molecule. We recently reported that ceramide specifically increased ABCA1-mediated cholesterol efflux to apolipoprotein A-I (apoA-I), a critical process that leads to the formation of cardioprotective HDL. In this report, we characterize the structural features of ceramide required for this effect. C2 dihydroceramide, which contains a fully saturated acyl chain and is commonly used as a negative control for ceramide apoptotic signaling, stimulated a 2- to 5-fold increase in ABCA1-mediated cholesterol efflux to apoA-I over a 0–60 μM concentration range without the cell toxicity apparent with native C2 ceramide. Compared with C2 ceramide, C6 and C8 ceramides with medium-length N-acyl chains showed a similar extent of efflux stimulation (a 2- to 5-fold increase) but at a higher onset concentration than the less hydrophobic C2 ceramide. In contrast, the reduced and methylated ceramide analogs, N,N-dimethyl sphingosine and N,N,N-trimethyl sphingosine, failed to stimulate cholesterol efflux. We found that changes in the native spatial orientation at either of two chiral carbon centers (or both) resulted in an ∼50% decrease compared with native ceramide-stimulated cholesterol efflux. These data show that the overall ceramide shape and the amide bond are critical for the cholesterol efflux effect and suggest that ceramide acts through a protein-mediated pathway to affect ABCA1 activity.

Keywords