Mathematics (Mar 2021)

On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue

  • Maryam Baghipur,
  • Modjtaba Ghorbani,
  • Hilal A. Ganie,
  • Yilun Shang

DOI
https://doi.org/10.3390/math9050512
Journal volume & issue
Vol. 9, no. 5
p. 512

Abstract

Read online

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.

Keywords