Polymers (Mar 2022)

Effect of Different CAD/CAM Milling and 3D Printing Digital Fabrication Techniques on the Accuracy of PMMA Working Models and Vertical Marginal Fit of PMMA Provisional Dental Prosthesis: An In Vitro Study

  • Marina Sidhom,
  • Hanaa Zaghloul,
  • Ihab El-Sayed Mosleh,
  • Elzahraa Eldwakhly

DOI
https://doi.org/10.3390/polym14071285
Journal volume & issue
Vol. 14, no. 7
p. 1285

Abstract

Read online

Background: Minimal evidence exists on the efficacy of different digital manufacturing techniques in the fabrication of precise dental working models and provisional prosthesis. Aim of study: The objective was to evaluate the effect of two digital fabrication techniques (CAD/CAM milling and 3D printing) on the accuracy of PMMA working models and marginal fit of PMMA provisional prosthesis. Materials and methods: Two abutment teeth of modified typodont were prepared. A reference stone model was fabricated, and an optical impression was performed to obtain a CAD reference model. Four CAM milled working models and four printed working models were fabricated. CAD software was used to design the provisional prostheses. Group A tested four milled provisional prosthesis, and group B tested four 3D printed prosthesis. The 3D accuracy of working models was assessed by superimposition of the control reference working model on the CAD test working model. A stereo-optical microscope was used to assess vertical marginal fit of the provisional dental prosthesis. Student’s t and Mann–Whitney U tests were utilized to compare the two groups. Results: Results showed no statistically significant difference between the two tested groups. Conclusion: The two digital working model fabrication techniques recorded comparable accuracy. Similarly, 3D printed provisional prosthesis showed comparable marginal fit to the CAD/CAM milled ones.

Keywords