In situ polymerized ionic liquids in polyester fiber composite membranes for detection of trace oil
Ruying Wang,
Yajing Zheng,
Xuejiao Liu,
Tongwang Chen,
Nan Li,
Jing Lin,
Jin-Ming Lin
Affiliations
Ruying Wang
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Yajing Zheng
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Xuejiao Liu
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Tongwang Chen
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Nan Li
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Jing Lin
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
Jin-Ming Lin
Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China; Corresponding author
Summary: In situ trace detection on ultra-clean surfaces is an important technology. The polyester fiber (PF) was introduced to serve as the template, to which the ionic liquids were bonded by hydrogen bonding. Polymerized ionic liquids (PIL) in PF were formed by in situ polymerization with the azodiisobutyronitrile (AIBN) and IL. The trace oil on metal surfaces was enriched by the composite membrane based on similar compatibility principle. The absolute recovery of the trace oil ranged from 91%–99% using this composite membrane. In the extraction samples, desirable linear correlations were obtained for trace oil in the range of 1.25–20 mg/mL. It has been proven that a 1 cm2 PIL-PF composite membrane can effectively extract as little as 1 mg of lubricating oil on an ultra-clean metal surface of 0.1 m2 with the LOD of 0.9 mg/mL, making it a promising material for in situ detection of trace oil on metal surfaces.