South African Journal of Chemical Engineering (Jul 2022)

Optimization on physicomechanical and wear properties of wood waste filled poly(lactic acid) biocomposites using integrated entropy-simple additive weighting approach

  • Tej Singh,
  • Punyasloka Pattnaik,
  • Shiv Ranjan Kumar,
  • Gusztáv Fekete,
  • Gábor Dogossy,
  • László Lendvai

Journal volume & issue
Vol. 41
pp. 193 – 202

Abstract

Read online

The present research work develops an evaluation method based on the hybrid entropy-simple additive weighting approach to select the best biocomposite material based on several potentially conflicting criteria. Poly(lactic acid) (PLA) biocomposites with varying proportions of wood waste (0, 2.5, 5, 7.5, and 10 by weight) was developed and evaluated for physical, mechanical, and sliding wear properties. The biocomposite containing 10 wt.% wood waste exhibited the lowest density (1.183 g/cm3) and highest modulus properties (tensile modulus = 2.97 GPa; compressive modulus = 3.46 GPa; and flexural modulus = 4.03 GPa). The bare PLA exhibited the highest strength properties (tensile strength = 57.96 MPa; compressive strength = 105.67 MPa; impact strength = 15.25 kJ/m2), whereas flexural strength (100.43 MPa) was the highest for 5 wt.% wood waste filled biocomposite. The wear of PLA decreased with 2.5 wt.% wood waste incorporated and increased with further addition of wood waste. The experimental results revealed a high compositional dependence with no discernible trend. As a result, prioritizing biocomposites' performance to choose the best from various biocomposite alternatives becomes tough. Therefore, a multi-criteria decision-making process based on a hybrid entropy-simple additive weighting approach was applied to find the optimal biocomposite by taking the experimental results as the selection criterion. The results show that the 2.5 wt.% wood waste added PLA biocomposite proved to be the best solution with optimal physical, mechanical, and wear properties. The validation with other decision-making models supports the robustness of the proposed approach in that the 2.5 wt.% wood waste added PLA biocomposite is the most dominating. This study contributes by providing preferences for the selection criteria and assessing the best alternative from the available PLA biocomposites.

Keywords