Open Journal of Mathematical Optimization (Sep 2022)

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. VII. Inverse Semigroup Theory, Closures, Decomposition of Perturbations

  • Hildebrand, Robert,
  • Köppe, Matthias,
  • Zhou, Yuan

DOI
https://doi.org/10.5802/ojmo.16
Journal volume & issue
Vol. 3
pp. 1 – 44

Abstract

Read online

In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row Gomory–Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and infinite-dimensional subspaces. The infinite-dimensional subspaces have partial symmetries; to describe them, we develop a theory of inverse semigroups of partial bijections, interacting with the functional equations satisfied by the perturbations. Our paper provides the foundation for grid-free algorithms for the Gomory–Johnson model, in particular for testing extremality of piecewise linear functions whose breakpoints are rational numbers with huge denominators.