Microbiology Spectrum (Jun 2022)
Detection and Stability of SARS-CoV-2 in Three Self-Collected Specimen Types: Flocked Midturbinate Swab (MTS) in Viral Transport Media, Foam MTS, and Saliva
Abstract
ABSTRACT Respiratory specimen collection materials shortages hampers severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We compared specimen alternatives and evaluated SARS-CoV-2 RNA stability under simulated shipping conditions. We compared concordance of RT-PCR detection of SARS-CoV-2 from flocked midturbinate swabs (MTS) in viral transport media (VTM), foam MTS without VTM, and saliva. Specimens were collected between August 2020 and April 2021 from three prospective cohorts. We compared RT-PCR cycle quantification (Cq) for Spike (S), Nucleocapsid (N), and the Open Reading Frame 1ab (ORF) genes for flocked MTS and saliva specimens tested before and after exposure to a range of storage temperatures (4–30°C) and times (2, 3, and 7 days). Of 1,900 illnesses with ≥2 specimen types tested, 335 (18%) had SARS-CoV-2 detected in ≥1 specimen; 304 (91%) were concordant across specimen types. Among illnesses with SARS-CoV-2 detection, 97% (95% confidence interval [CI]: 94–98%) were positive on flocked MTS, 99% (95% CI: 97–100%) on saliva, and 89% (95% CI: 84–93%) on foam MTS. SARS-CoV-2 RNA was detected in flocked MTS and saliva stored up to 30°C for 7 days. All specimen types provided highly concordant SARS-CoV-2 results. These findings support a range of viable options for specimen types, collection, and transport methods that may facilitate SARS-CoV-2 testing during supply and personnel shortages. IMPORTANCE Findings from this analysis indicate that (1) self-collection of flocked and foam MTS and saliva samples is feasible in both adults and children, (2) foam MTS with VTM and saliva are both viable and reasonable alternatives to traditional flocked MTS in VTM for SARS-CoV-2 detection, and (3) these sample types may be stored and transported at ambient temperatures for up to 7 days without compromising sample quality. These findings support methods of sample collection for SARS-CoV-2 detection that may facilitate widespread community testing in the setting of supply and personnel shortages during the current pandemic.
Keywords