Journal of Global Infectious Diseases (Jan 2018)

Extended-spectrum beta-lactamase producers: Detection for the diagnostic laboratory

  • Rani Diana Sahni,
  • Dilip Mathai,
  • Thambu David Sudarsanam,
  • V Balaji,
  • K N Brahamadathan,
  • Mary V Jesudasan,
  • M K Lalitha

DOI
https://doi.org/10.4103/jgid.jgid_49_17
Journal volume & issue
Vol. 10, no. 3
pp. 140 – 146

Abstract

Read online

Background and Objectives: Discovered in 1983, Extended spectrum beta-lactamase (ESBL) producers are still the leading cause of infections in India. Its prompt detection is crucial to the clinical management. The Clinical Laboratory Standards Institute (CLSI) recommends phenotypic screening and confirmatory tests to identify the ESBL producer making it cost and time consuming for the diagnostic laboratory. We compare here the screening and confirmatory tests offering a solution to the CLSI recommendation. Methods: Nosocomial isolates E. coli (71) and K. pneumoniae (25) resistant to cefotaxime and ceftazidime were included. CLSI recommended testing with cefotaxime, ceftazidime and in combination with clavulanic acid by disk diffusion and agar dilution methods were performed. E-test was performed on discrepant results. To determine the genetic relatedness of the organisms, 22 Medical and Surgical ICU isolates were genotyped by PFGE. Dendrogram was constructed using dice co-efficient, UPGMA method with diversity database software. Results and Conclusions: Phenotypic screening disk diffusion test versus the confirmatory agar dilution MIC tests with cefotaxime and ceftazidime correlated well with the final ESBL status (kappa 0.852 and 0.905 P < 0.001) and (kappa 0.911 and 0.822 P < 0.001). The tests show 99-100% sensitivity, 75-83.3% specificity, and positive likelihood ratios between 4.0 -5.9. E-test confirmed 6 of 12 discordant results as ESBLs. Of the 96 nosocomial isolates screened as possible ESBL producers by the Kirby-Bauer disk diffusion test, 86.5% were confirmed ESBL producers. Genotyping on the ICU isolates by PFGE revealed a genetically diverse population suggesting no transmission of phenotypically similar ESBL strains within the ICUs.

Keywords