Molecules (Aug 2022)

Resveratrol Reestablishes Mitochondrial Quality Control in Myocardial Ischemia/Reperfusion Injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α Pathway

  • Minsi Zheng,
  • Yinglu Bai,
  • Xiuyu Sun,
  • Rao Fu,
  • Liya Liu,
  • Mengsi Liu,
  • Zhiyong Li,
  • Xiulan Huang

DOI
https://doi.org/10.3390/molecules27175545
Journal volume & issue
Vol. 27, no. 17
p. 5545

Abstract

Read online

Resveratrol is a natural polyphenol found in various plants. It has been widely studied on cardiovascular disorders. It is known that resveratrol can activate Sirtuin proteins and participate in cellular energy metabolism through a Sirtuin-dependent pathway. Here, we hypothesized that resveratrol may protect against myocardial ischemia/reperfusion injury (MIRI) through the target of Sirt1/Sirt3 on mitochondrial dynamics, cardiac autophagy, bioenergetics and oxidative damage in hypoxia/reoxygenation (H/R)-induced neonatal rat cardiomyocytes. We observed that resveratrol could activate the Sirt1/Sirt3-FoxO pathway on myocardial mitochondria in H/R cardiomyocytes. Subsequently, we found that resveratrol repaired the fission–fusion balance, autophagic flux and mitochondrial biosynthesis compared by H/R group. These changes were followed by increased functional mitochondrial number, mitochondrial bioenergetics and a better mitochondrial antioxidant enzyme system. Meanwhile, these effects were antagonized by co-treatment with Selisistat (Ex527), a Sirtuin inhibitor. Together, our findings uncover the potential contribution of resveratrol in reestablishing a mitochondrial quality control network with Parkin, Mfn2 and PGC-1α as the key nodes.

Keywords