Energies (Jan 2020)

FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling

  • Vijay Kumar Singh,
  • Ravi Nath Tripathi,
  • Tsuyoshi Hanamoto

DOI
https://doi.org/10.3390/en13010260
Journal volume & issue
Vol. 13, no. 1
p. 260

Abstract

Read online

Finite set-model predictive control (FS-MPC) is used for power converters and drives having unique advantages as compared to the conventional control strategies. However, the computational burden of the FS-MPC is a primary concern for real-time implementation. Field programmable gate array (FPGA) is an alternative and exciting solution for real-time implementation because of the parallel processing capability, as well as, discrete nature of the hardware platform. Nevertheless, FPGA is capable of handling the computational requirements for the FS-MPC implementation, however, the system development involves multiple steps that lead to the time-consuming debugging process. Moreover, specific hardware coding skill makes it more complex corresponding to an increase in system complexity that leads to a tedious task for system development. This paper presents an FPGA-based experimental implementation of FS-MPC using the system modeling approach. Furthermore, a comparative analysis of FS-MPC in stationary αβ and rotating dq frame is considered for simulation as well as experimental result. The FS-MPC for a three-phase voltage source inverter (VSI) system is developed in a realistic digital simulator integrated with MATLAB-Simulink. The simulated controller model is further used for experimental system implementation and validation using Xilinx FPGA: Zedboard Zynq Evaluation and Development Kit. The digital simulator termed as Xilinx system generator (XSG) provided by Xilinx is used for modeling-based FPGA design.

Keywords