Batteries (Jul 2024)
Selective Separation of Lithium from Leachate of Spent Lithium-Ion Batteries by Zirconium Phosphate/Polyacrylonitrile Composite: Leaching and Sorption Behavior
Abstract
This study introduces a straightforward and effective amorphous ZrP/polyacrylonitrile composite ion exchange method for separating Li from the leachate of spent Li-ion batteries (NMC 111). The cathode materials were leached with a series of optimized experiments. The influence of operating variables, including the H2SO4 concentration, temperature, H2O2 concentration, and pulp density, on leaching efficiency was examined to determine the optimal conditions for sorption experiments. The leaching efficiencies of Li, Co, Ni, and Mn were found to be 99.9%, 99.5%, 98.8%, and 99.9%, respectively. Subsequently, batch sorption experiments were performed by using am-ZrP/PAN, including the determination of the effect of pH, sorption kinetics, and the sorption isotherm. The effect of pH on adsorption was examined in 1 mmol/L equimolar solutions of Li, Ni, Mn, and Co. Li was separated from Mn, Co, and Ni in the leaching liquor. The adsorbent for Mn, Co, and Ni sorption better fitted pseudo-second-order kinetics. High selectivity for Li was observed, even at the higher solution concentration of 15 mM Li, Ni, Co and Mn. In addition, the column loading process demonstrated selectivity for Li over Co, Ni, and Mn metal ions. The preliminary evaluation of the whole process with mass flow demonstrated that it would be feasible to achieve full separation and metal recovery by integrating a combined hydrometallurgical method in future studies. However, much work is still needed to develop a practical separation flowsheet.
Keywords