Earth and Space Science (Jul 2024)

Ground‐Based Far Infrared Emissivity Measurements Using the Absolute Radiance Interferometer

  • M. Loveless,
  • D. Adler,
  • F. Best,
  • E. Borbas,
  • X. Huang,
  • R. Knuteson,
  • T. L'Ecuyer,
  • N. R. Nalli,
  • E. Olsen,
  • H. Revercomb,
  • J. K. Taylor

DOI
https://doi.org/10.1029/2024EA003574
Journal volume & issue
Vol. 11, no. 7
pp. n/a – n/a

Abstract

Read online

Abstract Far infrared (FIR) emission from the Earth's polar regions has become an area of increasing scientific interest and value. FIR emission is important for understanding Earth's radiative balance and improving global climate models, especially in rapidly changing Arctic conditions. Far‐infrared emission from Earth is not currently being monitored from space, except as part of broadband emission channels of Earth radiation budget measurements like those from the CERES project, and only limited measurements in the FIR spectrum exist. The Absolute Radiance Interferometer (ARI), developed as a prototype of the infrared spectrometer for CLARREO at the University of Wisconsin‐Madison, Space Science and Engineering Center, measures absolute spectrally resolved infrared (IR) radiance from 200 to 2,000 cm−1 (or 5–50 μm) at 0.5 cm−1 resolution with high accuracy (<0.1 K 3‐sigma brightness temperature at scene temperature). This instrument was taken into the field in Madison, Wisconsin, USA, during the winters of 2021 and 2022, where the weather can reach polar‐like conditions to measure high spectral resolution radiances of various sample types. Sample materials included water, snow, ice, evergreen leaves, dry grass, and sand, all characteristic of high latitude regions. Radiances collected from both a sky view and the sample view in clear‐sky conditions were used to retrieve FIR emissivity. This paper describes the ARI instrument configuration and capability for ground‐based measurements in the FIR region, and documents retrieved emissivities of various analyzed samples. The retrieved emissivity results are publicly available, and comparisons are made to simulated emissivity estimates.

Keywords