Biomedicines (Sep 2024)

Features of Metabolites and Biomarkers in Inflammatory and Infectious Complications of Childhood Cancers

  • Maria Getsina,
  • Ekaterina Chernevskaya,
  • Natalia Beloborodova,
  • Evgeniy Golovnya,
  • Petr Polyakov,
  • Nicolai Kushlinskii

DOI
https://doi.org/10.3390/biomedicines12092101
Journal volume & issue
Vol. 12, no. 9
p. 2101

Abstract

Read online

Background: In the treatment of oncological diseases in children, the search for opportunities for the earlier detection of complications to improve treatment results is very important. Metabolomic studies are actively conducted to stratify different groups of patients in order to identify the most promising markers. Methods: Three groups of patients participated in this study: healthy children as a control group (n = 18), children with various malignant oncological diseases (leukemia, lymphoma, nephroblastoma, ependymoma, etc.) as patients (n = 40) without complications, and patients (n = 31) with complications (inflammatory and infectious). The mitochondrial metabolites (succinic and fumaric acids); biomarkers related to inflammation such as C-reactive protein (CRP), procalcitonin (PCT), and presepsin (PSP); and sepsis-associated aromatic metabolites, such as phenyllactic (PhLA), hydroxyphenyllactic (p-HPhLA), and hydroxyphenylacetic acids (p-HPhAA), were identified. Results: It was found that children with malignant oncological diseases had profound metabolic dysfunction compared to healthy children, regardless of the presence of systemic inflammatory response syndrome (SIRS) or sepsis. The prognostic ability of procalcitonin and presepsin for detecting sepsis was high: AUROC = 0.875, cut-off value (Youden index) = 0.913 ng/mL, and AUROC = 0.774, with cut-off value (Youden index) of 526 pg/mL, respectively. Conclusions: A significant increase in aromatic microbial metabolites and biomarkers in non-survivor patients that is registered already in the first days of the development of complications indicates the appropriateness of assessing metabolic dysfunction for its timely targeted correction.

Keywords