Heliyon (Jun 2024)

Investigating lactic acid bacteria genus Lactococcus lactis properties: Antioxidant activity, antibiotic resistance, and antibacterial activity against multidrug-resistant bacteria Staphylococcus aureus

  • Nora Hamdaoui,
  • Chaymae Benkirane,
  • Haytham Bouaamali,
  • Ali Azghar,
  • Mohamed Mouncif,
  • Adil Maleb,
  • Belkheir Hammouti,
  • Khalid Mashay Al-Anazi,
  • Pankaj Kumar,
  • Krishna Kumar Yadav,
  • Jeong Ryeol Choi,
  • Mustapha Meziane

Journal volume & issue
Vol. 10, no. 11
p. e31957

Abstract

Read online

Background: Lactic acid bacteria (LAB) are utilized as a starter culture in the manufacturing of fermented dairy items, as a preservative for various food products, and as a probiotic. In our country, some research has been carried out, even if LAB plays a principal role in food preservation and improves the texture and taste of fermented foods, that is why we tried to evaluate their probiotic effect. The objective of this research was to determine the antibacterial activity of Lactococcus lactis (L. lactis) against Staphylococcus aureus (S. aureus) ATCC 29213, investigate their antioxidant activity, and characterize their sensitivity against 18 antibiotics. Methods: A total of 23 LAB (L. lactis subsp. cremoris, L. lactis subsp. Lactis diacetylactis, L. lactis subsp. lactis) were isolated from cow's raw milk. The antibacterial activity was performed using two techniques, competition for nutrients and a technique utilizing components nature, using the disk diffusion method. The sensitivity of the studied LAB to different antibiotics was tested on Man rogosa sharp (MRS) agar using commercial antibiotic disks. All strains of LAB were examined for their antioxidant activity. The antioxidant activity of L. lactis was tested by 2,2-diphenyl-1 picrylhydrazyl (DPPH). Results: The results showed that the MRS medium was more adapted than Muller Hinton Agar (MHA) to investigate the antibacterial activity of L. lactis against S. aureus ATCC 29213. Also, L. lactis exhibited a notable degree of antibacterial activity against S. aureus ATCC 29213. L. Lactis subsp. Lactis displayed higher antibacterial activities, followed by L. lactis ssp. lactis biovar. diacetylactis, and lastly, L. lactis ssp. cremoris against S. aureus ATCC 29213. Lc 26 among all strains of L. lactis showed a high potential antibacterial activity reaching 40 ± 3 mm against S. aureus ATCC 29213. All strains of L. lactis showed a slightly moderate antioxidant activity (10.56 ± 1.28%-26.29 ± 0.05 %). The results of the antibiotic resistance test indicate that all strains of L. lactis were resistant to cefotaxime, sulfamethoxazole-trimethoprim, and streptomycin and were sensitive to Ampicillin, Amoxicillin, Penicillin G, Teicoplanin, Vancomycin, Gentamicin 500, Tetracycline, and Chloramphenicol. These test results indicate that this strain falls within the criteria of not posing any harmful effects on human health. The important antibacterial properties recorded for all L. Lactis strains were derived from the production of antibacterial active metabolites, such as protein, diacetyl, hydrogen peroxide, and lactic acid, together with the fight for nutrients. Conclusion: This study suggests that the strains of L. lactis could be added as an antibacterial agent against S. aureus ATCC 29213 and can provide an important nutritional property for their antioxidant potential.

Keywords