Annales Geophysicae (Feb 2010)

On the time-scales of the downward propagation and of the tropospheric planetary wave response to the stratospheric circulation

  • G. Nikulin,
  • G. Nikulin,
  • F. Lott

DOI
https://doi.org/10.5194/angeo-28-339-2010
Journal volume & issue
Vol. 28
pp. 339 – 351

Abstract

Read online

Three datasets (the NCEP-NCAR reanalysis, the ERA-40 reanalysis and the LMDz-GCM), are used to analyze the relationships between large-scale dynamics of the stratosphere and the tropospheric planetary waves during the Northern Hemisphere (NH) winter. First, a cross-spectral analysis clarifies the time scales at which downward propagation of stratospheric anomalies occurs in the low-frequency band (that is at periods longer than 50 days). At these periods the strength of the polar vortex, measured by the 20-hPa Northern Annular Mode (NAM) index and the wave activity flux, measured by the vertical component of the Eliassen-Palm flux (EPz) from both the troposphere and the stratosphere, are significantly related with each other and in lead-lag quadrature. While, in the low-frequency band of the downward propagation, the EPz anomalies of the opposite sign around NAM extremes drive the onset and decay of NAM events, we found that the EPz anomalies in the troposphere, are significantly larger after stratospheric vortex anomalies than at any time before. This marked difference in the troposphere is related to planetary waves with zonal wavenumbers 1–3, showing that there is a tropospheric planetary wave response to the earlier state of the stratosphere at low frequencies. We also find that this effect is due to anomalies in the EPz issued from the northern midlatitudes and polar regions.