Oil & Gas Science and Technology (Nov 2009)
Statistical Reconstruction of Gas Oil Cuts Reconstruction statistique de coupes gazoles
Abstract
Gas oil cuts are extremely complex mixtures of several thousands of different chemical species. Consequently, conventional petroleum analyses do not allow to obtain the molecular detail that is required for the development of robust and predictive kinetic models. Recently, two-dimensional Gas Chromatographic techniques (GC2D) have greatly improved the knowledge in the field of characterization of gas oils. However, they remain R&D tools and are hardly utilized in the refining industry. Hence, the goal of the statistical reconstruction of gas oils is to provide a surrogate for this GC2D analysis. To this aim, the gas oil cuts are characterized by means of matrices of molar fractions of pseudo-compounds, which are classified by chemical family and by carbon atom number. The input analyses are the Fitzgerald mass spectrometry, the sulfur speciation (one-dimensional gas chromatography coupled to a specific sulfur chemiluminescence detector) and the total nitrogen and basic nitrogen contents, and allow to quantify the proportions of all the chemical families present in the matrix. The simulated distillation is also used in order to introduce information on the volatility of the gas oil cut. The reconstruction method proposed in this paper is mainly based on a reference statistical distribution of the number of carbon atoms for the side chains connected to the naphtheno-aromatic cores. For each chemical family, the knowledge of the number of potential side chains and the estimation of the maximum length of these alkyl chains allow to determine the carbon number distribution by adjusting of the reference distribution. After reconstruction, the properties of the resulting molar fractions matrix are very close to the analyses used for the reconstruction. Moreover, the method allows to predict, with a high precision, complementary analyses such as the hydrogen content, the aromatic carbon content and the density at 15 ˚C. Finally, the matrix can be efficiently used to develop kinetic models like those employed at IFP to predict the performances of gas oil hydrotreating units. Les coupes gazoles sont des mélanges extrêmement complexes de plusieurs milliers de composés chimiques différents. De ce fait, les analyses pétrolières conventionnelles ne permettent pas d’obtenir un détail moléculaire qui serait pourtant nécessaire aux développements de modèles cinétiques robustes et prédictifs. Récemment, les techniques de chromatographie bidimensionnelle (GC2D) ont entraîné un saut qualitatif important dans le domaine de la caractérisation des gazoles mais celles-ci restent des outils de R&D encore peu généralisés dans l’industrie pétrolière. Par rapport à cette problématique, le but de la reconstruction statistique de gazoles consiste donc à fournir un substitut à l’analyse GC2D en proposant de caractériser les gazoles sous la forme de matrices de fractions molaires de pseudo-composés décrits par famille chimique et nombre d’atomes de carbone. Les analyses utilisées en entrée sont la spectrométrie de masse Fitzgerald, la spéciation soufre (chromatographie monodimensionnelle couplée à un détecteur du soufre par chimiluminescence), les teneurs en azote total et azote basique qui permettent de quantifier les proportions des différentes familles chimiques représentées dans la matrice. La distillation simulée est utilisée quant à elle pour avoir une information sur la volatilité de la coupe gazole. La méthode de reconstruction proposée dans cet article se base principalement sur une distribution statistique de référence du nombre d’atomes de carbone des chaînes alkyles sur les noyaux naphténo-aromatiques. Pour chaque famille chimique, la connaissance du nombre potentiel de chaînes alkyles et l’estimation de la longueur maximale de ces chaînes permettent alors de déterminer la distribution par nombre d’atomes de carbone en dilatant la distribution de référence. Au final, la matrice de fractions molaires obtenue possède des propriétés très proches des analyses utilisées pour la reconstruction. Elle permet aussi de prédire, avec une grande précision, des analyses complémentaires comme la teneur en hydrogène, la teneur en carbone aromatique ou la densité à 15 ˚C. Enfin, elle peut être employée très efficacement dans des modèles cinétiques comme ceux utilisés à l’IFP pour prédire les performances d’un procédé d’hydrotraitement de gazoles.