Fractal and Fractional (Dec 2023)

Power-Efficient Electronically Tunable Fractional-Order Filter

  • Sadaf Tasneem,
  • Rajeev Kumar Ranjan,
  • Sajal K. Paul,
  • Norbert Herencsar

DOI
https://doi.org/10.3390/fractalfract8010031
Journal volume & issue
Vol. 8, no. 1
p. 31

Abstract

Read online

This article describes a low-voltage, low-power fractional-order low-pass filter (FO-LPF) of order 1 + α, which is implemented using a voltage differencing differential difference amplifier (VDDDA). The VDDDA structure is implemented using the bulk-driven metal oxide semiconductor transistor technique. The transistors operate in the subthreshold region to maintain low-supply voltage and low-power consumption. The FO-LPF structure implemented using this VDDDA structure is compact. It includes three VDDDAs and three grounded capacitors along with two active resistors implemented using MOS transistors. In addition, this filter structure provides electronic tuning of its order and cut-off frequency through the bias current of the active component used. The effects of tracking error and parasitics on the functionality of the proposed FO-LPF were investigated. The VDDDA and filter operate at ±300 mV and dissipate only 207 nW and 663 nW of power, respectively. Thus, the VDDDA structure and filter are suitable for low-voltage and low-power operation. Layouts of the proposed VDDDA as well as the FO-LPF were designed in the Cadence Virtuoso environment. Post-layout simulation results of the designed circuits imply that they are suitable for fabrication. Noise, total harmonic distortion, Monte-Carlo, and PVT analyses were also performed.

Keywords