Pilar Nusa Mandiri (Sep 2023)

Disease Detection of Rice and Chili Based on Image Classification Using Convolutional Neural Network Android-Based

  • Rudi Muslim,
  • Zaeniah Zaeniah,
  • Ardiyallah Akbar,
  • Bahtiar Imran,
  • Zaenudin Zaenudin

DOI
https://doi.org/10.33480/pilar.v19i2.4669
Journal volume & issue
Vol. 19, no. 2
pp. 85 – 96

Abstract

Read online

The current development of machine learning makes it easier for humans to obtain information, especially from images. The presence of processing assistance from machines can increase the accuracy of the information provided to further convince the recipient of the information. Rice and chili farmers in Indonesia have experienced many disease attacks from several types of plant diseases. Not many farmers understand and are good at guessing the diseases that attack their rice and chili plants. So many rice and chili farmers experienced crop failure. This research aims to build a disease-detection system for rice and chili plants based on Android-based image classification. The machine learning method used is Convolutional Neural Network (CNN) with the Mobile Net version one model combined with the Sequential CNN and Tensor Flow Lite models. The results of the transfer learning evaluation on the Mobile Net version 1 model and the sequential CNN model obtained training accuracy of 0.88% with a loss of 0.34%, validation accuracy of 0.84% with a loss of 0.40%, and testing accuracy of 86% with a loss of 43%. Each uses batch 69 of the total training data stopping at epoch 30 from epoch 100. The results of field testing on the application of rice and chili disease detection on 20 images of rice and chili plants can detect Rice Neck Blast disease with a probability of 75% to 100% and Rice Hispa with a probability of 97% to 100%. It can also detect chili plant diseases such as Chili Yellowish with a probability of 83%, Chili Leaf Spot with a probability of 99%, Chili Whitefly with a probability of 91% to 95, Chili Healthy with a probability of 78% to 99%, and Chili Leaf Curl with a probability 75 to 76%. The probability obtained varies according to how likely damage is to rice and chili plants. CNN with the Mobile Net version one model and the Sequential model can extract and classify images so that it has maximum information processing capabilities. This research can make it easier to help farmers identify diseases that attack their rice and chili plants.

Keywords