International Journal of Mining Science and Technology (May 2018)
Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed
Abstract
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed. Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal’s frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of de-noised signal is closed to that of pressure signal identified in frequency domain analysis. Keywords: Air dense medium fluidized bed, Pressure fluctuations, Frequency domain analysis, Wavelet analysis, Particle distribution function