Applied Sciences (Feb 2022)

Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images

  • Loganathan Agilandeeswari,
  • Manoharan Prabukumar,
  • Vaddi Radhesyam,
  • Kumar L. N. Boggavarapu Phaneendra,
  • Alenizi Farhan

DOI
https://doi.org/10.3390/app12031670
Journal volume & issue
Vol. 12, no. 3
p. 1670

Abstract

Read online

Hyperspectral imaging (HSI), measuring the reflectance over visible (VIS), near-infrared (NIR), and shortwave infrared wavelengths (SWIR), has empowered the task of classification and can be useful in a variety of application areas like agriculture, even at a minor level. Band selection (BS) refers to the process of selecting the most relevant bands from a hyperspectral image, which is a necessary and important step for classification in HSI. Though numerous successful methods are available for selecting informative bands, reflectance properties are not taken into account, which is crucial for application-specific BS. The present paper aims at crop mapping for agriculture, where physical properties of light and biological conditions of plants are considered for BS. Initially, bands were partitioned according to their wavelength boundaries in visible, near-infrared, and shortwave infrared regions. Then, bands were quantized and selected via metrics like entropy, Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI) from each region, respectively. A Convolutional Neural Network was designed with the finer generated sub-cube to map the selective crops. Experiments were conducted on two standard HSI datasets, Indian Pines and Salinas, to classify different types of crops from Corn, Soya, Fallow, and Romaine Lettuce classes. Quantitatively, overall accuracy between 95.97% and 99.35% was achieved for Corn and Soya classes from Indian Pines; between 94.53% and 100% was achieved for Fallow and Romaine Lettuce classes from Salinas. The effectiveness of the proposed band selection with Convolutional Neural Network (CNN) can be seen from the resulted classification maps and ablation study.

Keywords