Heliyon (Jul 2024)
Inducing breast cancer cell death: The impact of taxodone on proliferation through apoptosis
Abstract
Breast cancer is the most prevalent form of cancer in women and a major contributor to cancer-related fatalities worldwide. Several factors play a role in the development of breast cancer, encompassing age, hormone levels, etc. Taxodone has shown significant anti-tumor properties in both laboratory experiments and living organisms. However, its impact on the human MCF-7 breast cancer cell line has not been researched. This investigation explores the chemo-preventive potential of taxodone in the MCF-7 breast cancer cells. The anticancer potential of taxodone against MCF-7 cells was determined by MTT assay. Further, the induction of apoptosis in MCF-7 breast cancer cells was confirmed via ELISA, which indicated the increased incidences of chromatin condensation and ssDNA breakage in the MCF-7 apoptotic cells upon 24 h of taxodone treatment. The intracellular reactive oxygen species (ROS) level was evaluated using H2DCFDA fluorescent dye to elucidate the mechanism of action triggered upon taxodone treatment. The increasing intercellular ROS level sequentially activated the caspase-mediated apoptosis pathway. Consequently, the outcomes revealed that taxodone decreased the cell viability of MCF-7 dose-dependently. Taxodone triggers apoptosis in MCF-7 cells by increasing intracellular ROS levels and activating the caspase cascade through the mitochondrial apoptosis-induced channel, an early marker of apoptosis onset. Our results indicate that taxodone exhibits anti-proliferative and apoptotic properties against human MCF-7 breast cancer cells, suggesting it to be a natural anticancer agent.