Gels (Mar 2022)

Addition of High Acyl Gellan Gum to Low Acyl Gellan Gum Enables the Blends 3D Bioprintable

  • Ashwini Rahul Akkineni,
  • Bilge Sen Elci,
  • Anja Lode,
  • Michael Gelinsky

DOI
https://doi.org/10.3390/gels8040199
Journal volume & issue
Vol. 8, no. 4
p. 199

Abstract

Read online

Long-term stability of gellan gum (GG) at physiological conditions is expected, as very low concentration of divalent ions are required for crosslinking, as compared to alginate—which is extensively used for tissue engineering (TE) applications. Hence, GG is proposed as an ideal candidate to substitute alginate for TE. Deacylated (low acyl; LA) GG forms brittle gels, thus only low concentrations were used for cell encapsulation, whereas acylated (high acyl; HA) GG forms weak/soft gels. 3D bioprinting using pure LAGG or HAGG is not possible owing to their rheological properties. Here, we report development and characterization of bioprintable blends of LAGG and HAGG. Increase in HAGG in the blends improved shear recovery and shape fidelity of printed scaffolds. Low volumetric swelling observed in cell culture conditions over 14 days indicates stability. Volumetric scaffolds were successfully printed and their mechanical properties were determined by uniaxial compressive testing. Mesenchymal stem cells bioprinted in blends of 3% LAGG and 3% HAGG survived the printing process showing >80% viability; a gradual decrease in cell numbers was observed over 21 days of culture. However, exploiting intrinsic advantages of 3D bioprinting, LAGG/HAGG blends open up numerous possibilities to improve and/or tailor various aspects required for TE.

Keywords