Molecular Cancer (Mar 2021)

FBW7 suppresses ovarian cancer development by targeting the N6-methyladenosine binding protein YTHDF2

  • Fei Xu,
  • Jiajia Li,
  • Mengdong Ni,
  • Jingyi Cheng,
  • Haiyun Zhao,
  • Shanshan Wang,
  • Xiang Zhou,
  • Xiaohua Wu

DOI
https://doi.org/10.1186/s12943-021-01340-8
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The tumor suppressor FBW7 is the substrate recognition component of the SCF E3-ubiquitin ligase complex that mediates proteolytic degradation of various oncogenic proteins. However, the role of FBW7 in ovarian cancer progression remains inadequately understood. Methods IP-MASS, co-IP, immunohistochemistry, and western blotting were used to identify the potential substrate of FBW7 in ovarian cancer. The biological effects of FBW7 were investigated using in vitro and in vivo models. LC/MS was used to detect the m6A levels in ovarian cancer tissues. MeRIP-Seq and RNA-Seq were used to assess the downstream targets of YTHDF2. Results We unveil that FBW7 is markedly down-regulated in ovarian cancer tissues and its high expression is associated with favorable prognosis and elevated m6A modification levels. Consistently, ectopic FBW7 inhibits ovarian cancer cell survival and proliferation in vitro and in vivo, while ablation of FBW7 empowers propagation of ovarian cancer cells. In addition, the m6A reader protein, YTHDF2, is identified as a novel substrate for FBW7. FBW7 counteracts the tumor-promoting effect of YTHDF2 by inducing proteasomal degradation of the latter in ovarian cancer. Furthermore, YTHDF2 globally regulates the turnover of m6A-modified mRNAs, including the pro-apoptotic gene BMF. Conclusions Our study has demonstrated that FBW7 suppresses tumor growth and progression via antagonizing YTHDF2-mediated BMF mRNA decay in ovarian cancer.

Keywords