Crystals (Jun 2021)

One Pot Synthesis, Surface and Magnetic Properties of Cu<sub>2</sub>O/Cu and Cu<sub>2</sub>O/CuO Nanocomposites

  • Sameerah I. Al-Saeedi,
  • Ghadah M. Al-Senani,
  • Omar H. Abd-Elkader,
  • Nasrallah M. Deraz

DOI
https://doi.org/10.3390/cryst11070751
Journal volume & issue
Vol. 11, no. 7
p. 751

Abstract

Read online

A series of copper-based systems containing two different nanocomposites (Cu2O/CuO and Cu2O/Cu) was synthesized by the egg white assisted auto-combustion route. This method was distinguished by the simplicity of its steps, low cost, one-pot synthesis process at low temperature and, short time. The characterization of the as prepared nanocomposites was carried out by using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Scanning electron microscope (SEM) and transmission electron micrograph (TEM), Energy dispersive spectrometry (EDS) techniques. Surface and magnetic properties of the obtained systems were determined by using N2 adsorption/desorption isotherms at 77 K and the vibrating sample magnetometer (VSM) technique. XRD results confirmed the formation of Cu2O/CuO and Cu2O/Cu nanocomposites with different ratios of well crystalline CuO, Cu2O, and Cu phases. FTIR results of the combusted product displays the presence of both CuO and Cu2O, respectively. SEM/EDS and TEM results confirm the formation of a porous nanocomposite containing Cu, O, and C elements. The change in concentration of the oxygen vacancies at the surface or interface of both Cu2O/CuO and Cu2O/Cu nanoparticles resulted in different changes in their magnetization. Based on this study, it is possible to obtain nanocomposite-based copper with multiple valances by a simple and inexpensive route which can be suitable for the fabrication of different transition metal composites.

Keywords