Ecotoxicology and Environmental Safety (Feb 2023)
Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions
Abstract
Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.