Polymers (Nov 2022)

Fabrication of a Polybutylene Succinate (PBS)/Polybutylene Adipate-Co-Terephthalate (PBAT)-Based Hybrid System Reinforced with Lignin and Zinc Nanoparticles for Potential Biomedical Applications

  • Asanda Mtibe,
  • Lerato Hlekelele,
  • Phumelele E. Kleyi,
  • Sudhakar Muniyasamy,
  • Nomvuyo E. Nomadolo,
  • Osei Ofosu,
  • Vincent Ojijo,
  • Maya J. John

DOI
https://doi.org/10.3390/polym14235065
Journal volume & issue
Vol. 14, no. 23
p. 5065

Abstract

Read online

Polybutylene adipate-co-terephthalate (PBAT) was used in an effort to improve the properties of polybutylene succinate (PBS). The resultant blend consisting of PBS/PBAT (70/30) was reinforced with lignin at different loadings (5 to 15 wt.%) and zinc (ZnO) nanoparticles (1.5 wt.%). Hot melt extrusion and injection moulding were used to prepare the hybrid composites. The mechanical, thermal, physical, self-cleaning, and antimicrobial properties of the resultant hybrid composites were investigated. The transmission electron microscopy (TEM) results confirmed that ZnO was successfully prepared with average diameters of 80 nm. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that there were interactions between the fillers and the blend. The tensile strength and elongation at the break of the resultant materials decreased with increasing the loadings, while the tensile modulus showed the opposite trend. The melting behaviour of the blend was practically unaffected by incorporating lignin and ZnO nanoparticles. In addition, the incorporation of fillers reduced the thermal stability of the materials. Furthermore, the incorporation of ZnO nanoparticles introduced photocatalytic properties into the polymer blend, rendering it to be a functional self-cleaning material and enhancing its antimicrobial activities.

Keywords