The Activity of Calcium Glycerophosphate and Fluoride against Cariogenic Biofilms of <i>Streptococcus mutans</i> and <i>Candida albicans</i> Formed In Vitro
Thamires Priscila Cavazana,
Thayse Yumi Hosida,
Caio Sampaio,
Leonardo Antônio de Morais,
Douglas Roberto Monteiro,
Juliano Pelim Pessan,
Alberto Carlos Botazzo Delbem
Affiliations
Thamires Priscila Cavazana
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Thayse Yumi Hosida
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Caio Sampaio
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Leonardo Antônio de Morais
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Douglas Roberto Monteiro
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Juliano Pelim Pessan
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
Alberto Carlos Botazzo Delbem
Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
This study evaluated the effects of calcium glycerophosphate (CaGP), with or without fluoride (F), on dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were treated three times with 0.125, 0.25, and 0.5% CaGP solutions, with or without 500 ppm F (NaF). Additionally, 500 and 1100 ppm F-solutions and artificial saliva served as controls. After the final treatment, the microbial viability and biofilm structure, metabolic activity, total biomass production, and the composition of the extracellular matrix composition were analyzed. Regardless of the presence of F, 0.25 and 0.5% CaGP promoted a higher biomass production and metabolic activity increase than the controls (p p p < 0.05). It can be concluded that CaGP alone affected the number of bacterial cells and, when combined with F, reduced its production of biomass, metabolic activity, and the expression of the extracellular matrix components.