Antioxidants (Aug 2021)
Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice
Abstract
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.
Keywords