Entropy (Apr 2021)

Interpolation with Specified Error of a Point Series Belonging to a Monotone Curve

  • Yevhen Havrylenko,
  • Yuliia Kholodniak,
  • Serhii Halko,
  • Oleksandr Vershkov,
  • Larysa Bondarenko,
  • Olena Suprun,
  • Oleksandr Miroshnyk,
  • Taras Shchur,
  • Mścisław Śrutek,
  • Marta Gackowska

DOI
https://doi.org/10.3390/e23050493
Journal volume & issue
Vol. 23, no. 5
p. 493

Abstract

Read online

The paper addresses the problem of modeling a smooth contour interpolating a point series belonging to a curve containing no special points, which represents the original curve with specified accuracy. The contour is formed within the area of possible location of the parts of the interpolated curve along which the curvature values are monotonously increased or decreased. The absolute interpolation error of the point series is estimated by the width of the area of possible location of the curve. As a result of assigning each intermediate point, the location of two new sections of the curve that lie within the area of the corresponding output section is obtained. When the interpolation error becomes less than the given value, the area of location of the curve is considered to be formed, and the resulting point series is interpolated by a contour that lies within the area. The possibility to shape the contours with arcs of circles specified by characteristics is investigated.

Keywords