PLoS ONE (Jan 2012)
A novel viral SOCS from infectious spleen and kidney necrosis virus: interacts with Jak1 and inhibits IFN-α induced Stat1/3 activation.
Abstract
Interferon (IFN)-induced Janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway is important in controlling immune responses and is negatively response-regulated by the suppressor of cytokine signaling (SOCS) proteins. However, several viruses have developed various strategies to inhibit this pathway to circumvent the anti-viral immunity of the host. The infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus in the family Iridoviridae and a causative agent of epizootics in fish. ISKNV ORF103R encodes a predicted viral SOCS (vSOCS) with high homology to the vertebrate SOCS1, but lacks a SOCS-box domain. Interestingly, vSOCS only exists in the genus Megalocytivirus. ISKNV-vSOCS can block the IFN-α-induced Jak/Stat pathway in HepG2 cells. Over-expression of ISKNV-vSOCS inhibited the activities of IFN-stimulated response element (ISRE) promoter; however, the inhibitions by ISKNV-vSOCS were dose-dependent. ISKNV-vSOCS interacted with Jak1 protein and inhibited its tyrosine kinase activity in vitro. ISKNV-vSOCS also impaired the phosphorylation of Stat1 and Stat3 proteins and suppressed their activations. The point mutations (F18D, S66A, S85A, and R64K) of ISKNV-vSOCS significantly impaired the inhibition of IFN-α-induced ISRE-promoter activation. In conclusion, vSOCS inhibits IFN-α-induced Stat1/Stat3 signaling, suggesting that Megalocytivirus has developed a novel strategy to evade IFN anti-viral immunity via vSOCS protein.