Frontiers in Plant Science (Feb 2023)
EADD-YOLO: An efficient and accurate disease detector for apple leaf using improved lightweight YOLOv5
Abstract
IntroductionCurrent detection methods for apple leaf diseases still suffer some challenges, such as the high number of parameters, low detection speed and poor detection performance for small dense spots, which limit the practical applications in agriculture. Therefore, an efficient and accurate model for apple leaf disease detection based on YOLOv5 is proposed and named EADD-YOLO.MethodsIn the EADD-YOLO, the lightweight shufflenet inverted residual module is utilized to reconstruct the backbone network, and an efficient feature learning module designed through depthwise convolution is proposed and introduced to the neck network. The aim is to reduce the number of parameters and floating point of operations (FLOPs) during feature extraction and feature fusion, thus increasing the operational efficiency of the network with less impact on detection performance. In addition, the coordinate attention module is embedded into the critical locations of the network to select the critical spot information and suppress useless information, which is to enhance the detection accuracy of diseases with various sizes from different scenes. Furthermore, the SIoU loss replaces CIoU loss as the bounding box regression loss function to improve the accuracy of prediction box localization.ResultsThe experimental results indicate that the proposed method can achieve the detection performance of 95.5% on the mean average precision and a speed of 625 frames per second (FPS) on the apple leaf disease dataset (ALDD). Compared to the latest research method on the ALDD, the detection accuracy and speed of the proposed method were improved by 12.3% and 596 FPS, respectively. In addition, the parameter quantity and FLOPs of the proposed method were much less than other relevant popular algorithms.DiscussionIn summary, the proposed method not only has a satisfactory detection effect, but also has fewer parameters and high calculation efficiency compared with the existing approaches. Therefore, the proposed method provides a high-performance solution for the early diagnosis of apple leaf disease and can be applied in agricultural robots. The code repository is open-sourced at https://github.com/AWANWY/EADD-YOLO.
Keywords