Sensors (Mar 2024)

Investigation of Using Hyperspectral Vegetation Indices to Assess Brassica Downy Mildew

  • Bo Liu,
  • Marco Antonio Fernandez,
  • Taryn Michelle Liu,
  • Shunping Ding

DOI
https://doi.org/10.3390/s24061916
Journal volume & issue
Vol. 24, no. 6
p. 1916

Abstract

Read online

Downy mildew caused by Hyaloperonospora brassicae is a severe disease in Brassica oleracea that significantly reduces crop yield and marketability. This study aims to evaluate different vegetation indices to assess different downy mildew infection levels in the Brassica variety Mildis using hyperspectral data. Artificial inoculation using H. brassicae sporangia suspension was conducted to induce different levels of downy mildew disease. Spectral measurements, spanning 350 nm to 1050 nm, were conducted on the leaves using an environmentally controlled setup, and the reflectance data were acquired and processed. The Successive Projections Algorithm (SPA) and signal sensitivity calculation were used to extract the most informative wavelengths that could be used to develop downy mildew indices (DMI). A total of 37 existing vegetation indices and three proposed DMIs were evaluated to indicate downy mildew (DM) infection levels. The results showed that the classification using a support vector machine achieved accuracies of 71.3%, 80.7%, and 85.3% for distinguishing healthy leaves from DM1 (early infection), DM2 (progressed infection), and DM3 (severe infection) leaves using the proposed downy mildew index. The proposed new downy mildew index potentially enables the development of an automated DM monitoring system and resistance profiling in Brassica breeding lines.

Keywords