Atmosphere (Apr 2020)

Projecting Changes in Temperature Extremes in the Han River Basin of China Using Downscaled CMIP5 Multi-Model Ensembles

  • Weiwei Xiao,
  • Bin Wang,
  • De Li Liu,
  • Puyu Feng

DOI
https://doi.org/10.3390/atmos11040424
Journal volume & issue
Vol. 11, no. 4
p. 424

Abstract

Read online

Estimating the changes in the spatial–temporal characteristics of extreme temperature events under future climate scenarios is critical to provide reference information to help mitigate climate change. In this study, we analyzed 16 extreme temperature indices calculated based on downscaled data from 28 Global Climate Models (GCMs) that were obtained from Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios in the Han River Basin (HRB). The results indicate that the downscaled data from 28 GCMs reproduced a consistent sign of recent trends for all extreme temperature indices except the DTR for the historical period (1961–2013). We found significantly increasing trends for the warm extreme indices (i.e., TXx, TNx, TX90p, TN90p, SU, TR, and WSDI) and considerably decreasing trends for the cold extreme indices (i.e., TX10p, TN10p, CSDI, FD, ID) under both the RCP4.5 and 8.5 scenarios for 2021–2100. Spatially, great changes in warm extremes will occur in the west and southeast of the HRB in the future. The projected changes in extreme temperatures will impact the eco-environment and agricultural production. Our findings will help regional managers adopt countermeasures and strategies to adapt to future climate change, especially extreme weather events.

Keywords