Nuclear Engineering and Technology (Jul 2024)

New polyester composites synthesized with additions of different sized ZnO to study their shielding efficiency

  • M. Elsafi,
  • M.I. Sayyed,
  • Aljawhara H. Almuqrin

Journal volume & issue
Vol. 56, no. 7
pp. 2821 – 2827

Abstract

Read online

This investigation developed a novel polyester composite based on the addition of zinc oxide (ZnO) of different sizes. We prepared nine samples Containing different percentages and sizes of ZnO as well as the control sample (Pol-ZnO0). The attenuation factors of Pol-micro ZnO were estimated using Phy-x software, while the HPGe detector and various gamma sources were used to experimentally measure the all-prepared composites. In terms of the two methods for micro composites, good agreement was observed. The linear attenuation coefficient (LAC) of Pol-ZnO20, Pol-ZnO40, and Pol-ZnO60, two more samples one with ZnO nanoparticles instead of microparticles, and the other with half microparticles and half nanoparticles (referenced as 0.5 M + 0.5 N) were determined. For all the Polyester composites and energies, the mixture of microparticles and nanoparticles had greater LAC values than each of the particles on their own. For example, the LAC values for the Pol-ZnO20 polymer at 1.330 MeV are 0.0836, 0.0888, and 0.0903 cm−1 for the microparticles, nanoparticles, and mixture, respectively. The values of the prepared polymer samples' radiation protection efficiency (RPE) against energy with a thickness of 2 cm was determined experimentally. The Pol-ZnO60 0.5 M + 0.5 N sample has the highest RPE out of all the samples, followed by its nanoparticle counterpart, and then its microparticle counterpart. On the other hand, the Pol-ZnO0 sample, the polymer with no ZnO content, at all energies has the lowest RPE, followed by the three Pol-ZnO20 samples.

Keywords