Scientific Data (May 2024)

A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation

  • Dominic LaBella,
  • Omaditya Khanna,
  • Shan McBurney-Lin,
  • Ryan Mclean,
  • Pierre Nedelec,
  • Arif S. Rashid,
  • Nourel hoda Tahon,
  • Talissa Altes,
  • Ujjwal Baid,
  • Radhika Bhalerao,
  • Yaseen Dhemesh,
  • Scott Floyd,
  • Devon Godfrey,
  • Fathi Hilal,
  • Anastasia Janas,
  • Anahita Kazerooni,
  • Collin Kent,
  • John Kirkpatrick,
  • Florian Kofler,
  • Kevin Leu,
  • Nazanin Maleki,
  • Bjoern Menze,
  • Maxence Pajot,
  • Zachary J. Reitman,
  • Jeffrey D. Rudie,
  • Rachit Saluja,
  • Yury Velichko,
  • Chunhao Wang,
  • Pranav I. Warman,
  • Nico Sollmann,
  • David Diffley,
  • Khanak K. Nandolia,
  • Daniel I Warren,
  • Ali Hussain,
  • John Pascal Fehringer,
  • Yulia Bronstein,
  • Lisa Deptula,
  • Evan G. Stein,
  • Mahsa Taherzadeh,
  • Eduardo Portela de Oliveira,
  • Aoife Haughey,
  • Marinos Kontzialis,
  • Luca Saba,
  • Benjamin Turner,
  • Melanie M. T. Brüßeler,
  • Shehbaz Ansari,
  • Athanasios Gkampenis,
  • David Maximilian Weiss,
  • Aya Mansour,
  • Islam H. Shawali,
  • Nikolay Yordanov,
  • Joel M. Stein,
  • Roula Hourani,
  • Mohammed Yahya Moshebah,
  • Ahmed Magdy Abouelatta,
  • Tanvir Rizvi,
  • Klara Willms,
  • Dann C. Martin,
  • Abdullah Okar,
  • Gennaro D’Anna,
  • Ahmed Taha,
  • Yasaman Sharifi,
  • Shahriar Faghani,
  • Dominic Kite,
  • Marco Pinho,
  • Muhammad Ammar Haider,
  • Michelle Alonso-Basanta,
  • Javier Villanueva-Meyer,
  • Andreas M. Rauschecker,
  • Ayman Nada,
  • Mariam Aboian,
  • Adam Flanders,
  • Spyridon Bakas,
  • Evan Calabrese

DOI
https://doi.org/10.1038/s41597-024-03350-9
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.