Sensors (Sep 2022)

Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information

  • Bingguo Liu,
  • Zhuo Gao,
  • Binghui Lu,
  • Hangcheng Dong,
  • Zeru An

DOI
https://doi.org/10.3390/s22197402
Journal volume & issue
Vol. 22, no. 19
p. 7402

Abstract

Read online

In modern industrial production, the prediction ability of remaining useful life of bearings directly affects the safety and stability of the system. Traditional methods require rigorous physical modeling and perform poorly for complex systems. In this paper, an end-to-end remaining useful life prediction method is proposed, which uses short-time Fourier transform (STFT) as preprocessing. Considering the time correlation of signal sequences, a long and short-term memory network is designed in CNN, incorporating the convolutional block attention module, and understanding the decision-making process of the network from the interpretability level. Experiments were carried out on the 2012PHM dataset and compared with other methods, and the results proved the effectiveness of the method.

Keywords