Electrical engineering & Electromechanics (Mar 2015)
Stabilization of parameters of asynchronous electric drive with vector control
Abstract
A problem of stabilization of parameters of the asynchronous electric drive vector control system is considered. Usually such systems have two control channels. The synthesis of stabilizing controllers is made for every control channel. The evaluation of variables of system status is made by observer. The problem of stabilizing controllers and observer synthesis consists in calculation of state feedback intensification. Its solution is based on existing approaches form vector control theories, matrix inequalities and Lyapunov stability. Several synthesis methods of stabilizing controllers have been proposed. Structural scheme of vector control system and observer has been built. The simulation of transient processes in the vector control system is carried out with MATLAB computing environment. The most important property of obtained solution is Lyapunov stability of control loops closed-looped by state vectors. Transient processes have been investigated on the particular example. Graphs confirming stability of such processes that flow in the vector control system in minimal period of time have been plotted down.