Phytochemical Profile and Microbiological Activity of Some Plants Belonging to the Fabaceae Family
Diana Obistioiu,
Ileana Cocan,
Emil Tîrziu,
Viorel Herman,
Monica Negrea,
Alexandra Cucerzan,
Alina-Georgeta Neacsu,
Antoanela Lena Cozma,
Ileana Nichita,
Anca Hulea,
Isidora Radulov,
Ersilia Alexa
Affiliations
Diana Obistioiu
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Ileana Cocan
Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Emil Tîrziu
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Viorel Herman
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Monica Negrea
Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Alexandra Cucerzan
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Alina-Georgeta Neacsu
Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Antoanela Lena Cozma
Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Ileana Nichita
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Anca Hulea
Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Isidora Radulov
Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
Ersilia Alexa
Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania
This study aimed to investigate the chemical composition and the activity against Staphylococcus aureus (S. aureus) (ATCC 25923), Streptococcus pyogenes (S. pyogenes) (ATCC 19615), Escherichia coli (E. coli) (ATCC 25922), Pseudomonas aeruginosa (P. aeruginosa) (ATCC 27853), Shigella flexneri (S. flexneri) (ATCC 12022), Salmonella typhimurium (S. typhimurium) (ATCC 14028), Haemophillus influenzae (H. influenza) type B (ATCC 10211) and two fungal strains: Candida albicans (C. albicans) (ATCC 10231) and Candida parapsilopsis (C. parapsilopsis) (ATCC 22019) of the extracts obtained from Melilotus officinalis (MO), Coronilla varia (CV); Ononis spinosa (OS) and Robinia pseudoacacia (RP) (Fabaceae), and to identify the chemical compounds responsible for the antimicrobial effect against the tested strains. The extracts were obtained by conventional hydroalcoholic extraction and analyzed in terms of total polyphenols using the spectrophotometric method and by liquid chromatography (LC). The results have shown that the highest polyphenols content was recorded in the RP sample (16.21 mg gallic acid equivalent GAE/g), followed by the CV (15.06 mg GAE/g), the OS (13.17 mg GAE/g), the lowest value being recorded for the MO sample (11.94 mg GAE/g). The antimicrobial testing of plant extracts was carried out using the microdilution method. The most sensitive strains identified were: E. coli, S. typhimurium, P. aeruginosa and S. pyogenes, while protocatechuic acid, gallic acid, caffeic acid, quercetin, rutin, and kaempferol were identified as the chemical compounds responsible for the antibacterial effect. The analysis of the correlation between the chemical composition and the antimicrobial effect proved a moderate (r > 0.5) positive correlation between rosmarinic acid and S. pyogenes (r = 0.526), rosmarinic acid and S. typhimurium (r = 0.568), quercetin and C. albicans (r = 0.553), quercetin and S. pyogenes (r = 0.605). Therefore, it suggested possible antimicrobial activity generated by these chemical components. The results recommend the Fabaceae plants as promising candidates for further research to develop novel natural antimicrobial drugs.