BMC Nephrology (May 2020)
Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin
Abstract
Abstract Background Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, and is the most important cause of death for diabetic patients. Baicalin (BAI) has anti-oxidative, anti-inflammatory and anti-apoptotic activities, which play a role in attenuating insulin resistance and protecting the kidney. Moreover, cell-specific targeting of renal tubular cells is an approach to enhance drug accumulation in the kidney. Methods Forty-five Sprague-Dawley rats were divided into four groups. A diabetes model was created using streptozotocin (STZ) intraperitoneally injection. The four groups included: Control group (n = 10), DN (n = 15), BAI treatment (BAI; n = 10) and BAI-LZM treatment (BAI-LZM; n = 10) groups. In the current study, the renoprotection and anti-fibrotic effects of BAI-lysozyme (LZM) conjugate were further investigated in rats with DN induced by STZ compared with BAI treatment alone. Results The results suggest that BAI-LZM better ameliorates renal impairment, metabolic disorder and renal fibrosis than BAI alone in rats with DN, and the potential regulatory mechanism likely involves inhibiting inflammation via the nuclear factor-κB signaling pathway, inhibiting extracellular matrix accumulation via the transforming growth factor-β/Smad3 pathway and regulating cell proliferation via the insulin-like growth factor (IGF)-1/IGF-1 receptor/p38 Mitogen-activated protein kinase (MAPK) pathway. BAI and the kidney-targeted BAI-LZM can utilize the body’s cytoprotective pathways to reactivate autophagy (as indicated by the autophagy markers mechanistic target of rapamycin and sirtuin 1 to ameliorate DN outcomes. Conclusions Our data support the traditional use of S. baicalensis as an important anti-DN traditional chinese medicine (TCM), and BAI, above all BAI-LZM, is a promising source for the identification of molecules with anti-DN effects.
Keywords