Nanomaterials (Feb 2019)

Self-Assembly Fluorescent Cationic Cellulose Nanocomplex via Electrostatic Interaction for the Detection of Fe<sup>3+</sup> Ions

  • Haoying Wang,
  • Xiu Ye,
  • Jinping Zhou

DOI
https://doi.org/10.3390/nano9020279
Journal volume & issue
Vol. 9, no. 2
p. 279

Abstract

Read online

In this work, an aggregation-induced emission (AIE) sensor for the detection of Fe3+ ions was fabricated through the electrostatic interaction between 1,1,2-triphenyl-2-[4-(3-sulfonatopropoxyl)-phenyl]-ethene sodium salt (SPOTPE) and quaternized cellulose (QC). The structure and properties of the SPOTPE/QC nanocomplex were studied by using 1H NMR, spectrofluorophotometer, transmission electron microscopy (TEM), and dynamic laser light scattering (DLS). An aqueous solution of SPOTPE and QC resulted in a remarkably enhanced cyan fluorescence in comparison to that of the SPOTPE solution. Strong through-space electrostatic interaction between SPOTPE and QC is the main cause for the fluorescence emerging. The fluorescence of the SPOTPE/QC solutions show good stability over a wide pH range of 5.0⁻10.0. When introducing Fe3+ ions into the SPOTPE/QC solution, the fluorescence quenched within 5 s. SPOTPE/QC solutions exhibited high selectivity and sensitivity for the detection of Fe3+ ions with ignored interferences from other ions, and the detection limit was determined to be 2.92 × 10−6 M. The quenching mechanism was confirmed to be the consequence of the binding interactions between Fe3+ ions and SPOTPE/QC complex.

Keywords