Materials (Dec 2009)

Predicting New Materials for Hydrogen Storage Application

  • Helmer Fjellvåg,
  • Ponniah Vajeeston,
  • Ponniah Ravindran

DOI
https://doi.org/10.3390/ma2042296
Journal volume & issue
Vol. 2, no. 4
pp. 2296 – 2318

Abstract

Read online

Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed.

Keywords