Moroccan Journal of Pure and Applied Analysis (Sep 2023)

p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators

  • Jennane Mohsine,
  • Alaoui My Driss Morchid

DOI
https://doi.org/10.2478/mjpaa-2023-0028
Journal volume & issue
Vol. 9, no. 3
pp. 407 – 419

Abstract

Read online

We investigate the existence of non-trivial weak solutions for the following p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators {M(σ)(Δp(x)2u-Δp(x)u)=λϑ(x)|u|q(x)-2u(∫Ωϑ(x)q(x)|u|q(x)dx)r in Ω,u∈W2,p(.)(Ω)∩W01,p(.)(Ω),\left\{ {\matrix{ {M\left( \sigma \right)\left( {\Delta _{p\left( x \right)}^2u - {\Delta _{p\left( x \right)}}u} \right) = \lambda \vartheta \left( x \right){{\left| u \right|}^{q\left( x \right) - 2}}u{{\left( {\int_\Omega {{{\vartheta \left( x \right)} \over {q\left( x \right)}}{{\left| u \right|}^{q\left( x \right)}}dx} } \right)}^r}\,{\rm{in}}\,\Omega ,} \hfill \cr {u \in {W^{2,p\left( . \right)}}\left( \Omega \right) \cap W_0^{1,p\left( . \right)}\left( \Omega \right),} \hfill \cr } } \right. under some suitable conditions on the continuous functions p, q, the non-negative function ϑ and M(σ), where σ:=∫Ω|Δu|p(x)p(x)+|∇u|p(x)p(x)dx.\sigma : = \int_\Omega {{{{{\left| {\Delta u} \right|}^{p\left( x \right)}}} \over {p\left( x \right)}} + {{{{\left| {\nabla u} \right|}^{p\left( x \right)}}} \over {p\left( x \right)}}dx.} Our main results is obtained by employing variational techniques and the well-known symmetric mountain pass lemma.

Keywords