Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study
Filippo Lococo,
Luca Boldrini,
Charles-Davies Diepriye,
Jessica Evangelista,
Camilla Nero,
Sara Flamini,
Angelo Minucci,
Elisa De Paolis,
Emanuele Vita,
Alfredo Cesario,
Salvatore Annunziata,
Maria Lucia Calcagni,
Marco Chiappetta,
Alessandra Cancellieri,
Anna Rita Larici,
Giuseppe Cicchetti,
Esther G.C. Troost,
Róza Ádány,
Núria Farré,
Ece Öztürk,
Dominique Van Doorne,
Fausto Leoncini,
Andrea Urbani,
Rocco Trisolini,
Emilio Bria,
Alessandro Giordano,
Guido Rindi,
Evis Sala,
Giampaolo Tortora,
Vincenzo Valentini,
Stefania Boccia,
Stefano Margaritora,
Giovanni Scambia
Affiliations
Filippo Lococo
Catholic University of the Sacred Heart
Luca Boldrini
Catholic University of the Sacred Heart
Charles-Davies Diepriye
Radiotherapy Unit, A. Gemelli University Hospital Foundation IRCCS
Jessica Evangelista
Catholic University of the Sacred Heart
Camilla Nero
Catholic University of the Sacred Heart
Sara Flamini
Thoracic Surgery Unit, A. Gemelli University Hospital Foundation IRCCS
Angelo Minucci
Catholic University of the Sacred Heart
Elisa De Paolis
Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), A. Gemelli University Hospital Foundation IRCCS
Emanuele Vita
Catholic University of the Sacred Heart
Alfredo Cesario
Catholic University of the Sacred Heart
Salvatore Annunziata
Catholic University of the Sacred Heart
Maria Lucia Calcagni
Catholic University of the Sacred Heart
Marco Chiappetta
Catholic University of the Sacred Heart
Alessandra Cancellieri
Catholic University of the Sacred Heart
Anna Rita Larici
Catholic University of the Sacred Heart
Giuseppe Cicchetti
Catholic University of the Sacred Heart
Esther G.C. Troost
Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
Róza Ádány
ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen
Núria Farré
Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau (IR-HSCSP)
Ece Öztürk
School of Medicine, Turkey and Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Koç University
Dominique Van Doorne
Department of Philosophy and Educational Sciences, University of Turin - Academy of the Expert Patient ADPEE - EUPATI
Abstract Background The current management of lung cancer patients has reached a high level of complexity. Indeed, besides the traditional clinical variables (e.g., age, sex, TNM stage), new omics data have recently been introduced in clinical practice, thereby making more complex the decision-making process. With the advent of Artificial intelligence (AI) techniques, various omics datasets may be used to create more accurate predictive models paving the way for a better care in lung cancer patients. Methods The LANTERN study is a multi-center observational clinical trial involving a multidisciplinary consortium of five institutions from different European countries. The aim of this trial is to develop accurate several predictive models for lung cancer patients, through the creation of Digital Human Avatars (DHA), defined as digital representations of patients using various omics-based variables and integrating well-established clinical factors with genomic data, quantitative imaging data etc. A total of 600 lung cancer patients will be prospectively enrolled by the recruiting centers and multi-omics data will be collected. Data will then be modelled and parameterized in an experimental context of cutting-edge big data analysis. All data variables will be recorded according to a shared common ontology based on variable-specific domains in order to enhance their direct actionability. An exploratory analysis will then initiate the biomarker identification process. The second phase of the project will focus on creating multiple multivariate models trained though advanced machine learning (ML) and AI techniques for the specific areas of interest. Finally, the developed models will be validated in order to test their robustness, transferability and generalizability, leading to the development of the DHA. All the potential clinical and scientific stakeholders will be involved in the DHA development process. The main goals aim of LANTERN project are: i) To develop predictive models for lung cancer diagnosis and histological characterization; (ii) to set up personalized predictive models for individual-specific treatments; iii) to enable feedback data loops for preventive healthcare strategies and quality of life management. Discussion The LANTERN project will develop a predictive platform based on integration of multi-omics data. This will enhance the generation of important and valuable information assets, in order to identify new biomarkers that can be used for early detection, improved tumor diagnosis and personalization of treatment protocols. Ethics Committee approval number 5420 − 0002485/23 from Fondazione Policlinico Universitario Agostino Gemelli IRCCS – Università Cattolica del Sacro Cuore Ethics Committee. Trial registration clinicaltrial.gov - NCT05802771.