Journal of Advanced Dielectrics (Dec 2018)
Grain boundary effects on piezoelectric properties of the core–shell-structured BaTiO3@TiO2 ceramics
Abstract
Grain boundary effect on BaTiO3 has been widely investigated for several decades. However, all of them tailored the grain boundary by grain size of BaTiO3. In this case, a direct way was introduced to modify the grain boundary by coating technique to investigate the role of grain boundary in ferroelectric materials. Nonferroelectric phase TiO2 was employed to investigate grain boundary effects on the electrical properties of BaTiO3 piezoelectric ceramics. TiO2 coating can result in the reduction of piezoelectric and ferroelectric properties and the annealing process in oxygen can increase piezoelectric behavior of pure BaTiO3 due to valence state of Ti ions while that remains for Ti-modified composition possibly due to the increased grain boundary effect by impedance analysis. Compared with ferroelectric grain, grain boundary plays a critical role to impact the electrical properties of perovskite-type ferroelectric materials.
Keywords