Materials for Renewable and Sustainable Energy (May 2020)

Tailoring the morphology, crystalline structure, and electrochemical properties of nanostructured Bi2S3 using various solvent mixtures

  • Adam Moyseowicz,
  • Agata Moyseowicz

DOI
https://doi.org/10.1007/s40243-020-00171-9
Journal volume & issue
Vol. 9, no. 2
pp. 1 – 10

Abstract

Read online

Abstract Among novel nanostructured materials, transition metal chalcogenides (i.e., sulfides and selenides) emerged as promising candidates due to their unique electrochemical properties. The following study presents a facile synthesis approach of Bi2S3 nanostructures using solvent mixtures of ethanol and water with different volume ratios and ammonium sulfide as a sulfur precursor. The resultant bismuth sulfides were characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen sorption at 77 K. The adjustment of the solvent mixture revealed the possibility of customizing the crystalline structure from amorphous to fully crystalline, as well as the morphology of the Bi2S3, which subsequently influenced on their electrochemical properties. Bi2S3 synthesized in a solvent mixture of ethanol-to-water volume ratio 1:2 (Bi2S3-EW12) exhibited almost fully crystalline structure and nanoplatelet-like morphology, which translated to the best electrochemical performance. Bi2S3-EW12 achieved specific capacity of 748 C g−1 in an aqueous 6 mol L−1 KOH electrolyte and maintained the highest capacity value at a large current density of 20 A g−1.

Keywords