Journal of Dairy Science (Jul 2022)
Effects of season, variety type, and trait on dry matter yield, nutrient composition, and predicted intake and milk yield of whole-plant sorghum forage
Abstract
ABSTRACT: Sorghum forage is an important alternative to high-quality forage in regions where climatic and soil conditions are less desirable for corn production for silage and producing comparable nutritive value is challenging. The objective of this experiment was to assess the effects of season (spring vs. summer), sorghum variety type (forage sorghum vs. sorghum-sudangrass), and trait [brown midrib (BMR) vs. non-BMR] on dry matter (DM) yield, nutrient composition, and predicted intake and milk yield of whole-plant sorghum forage grown in Florida from 2008 to 2019. Whole-plant sorghum forage was harvested at a targeted 32% of DM, and each year, spring (April) and summer (July) trials were established. A total of 300 forage sorghum and 137 sorghum-sudangrass hybrids were tested for a total of 437 hybrids, of which 199 hybrids contained the BMR trait and 238 were non-BMR. An interaction between season and sorghum variety type was observed for DM yield. Dry matter yield was greater for the spring season than the summer season, with sorghum-sudangrass outperforming forage sorghum only during the spring season. In addition, BMR hybrids had a lower DM yield than non-BMR hybrids, regardless of season and variety type. An interaction between season and trait was observed for predicted neutral detergent fiber digestibility after 30 h of incubation in rumen fluid (NDFD30h). Predicted NDFD30h was greater for BMR sorghum in comparison to non-BMR sorghum, but BMR sorghum had slightly greater predicted NDFD30h when grown in the spring than summer, whereas no seasonal differences were found for predicted NDFD30h across non-BMR sorghum. An interaction between season, variety type, and trait was observed for predicted dry matter intake at 45 (DMI45), 55 (DMI55), and 65 (DMI65) kg of milk/d. Predicted DMI45 and DMI55 were greater for spring BMR forage sorghum than for spring and summer non-BMR sorghum-sudangrass and were greater for spring BMR forage sorghum than for summer BMR sorghum-sudangrass. Predicted DMI65 was greater for BMR forage sorghum in comparison to all non-BMR hybrids in the spring. Additionally, spring BMR forage sorghum was greater than summer sorghum-sudangrass regardless of trait. An interaction between season and sorghum variety type was observed for milk yield per megagram of forage. Milk yield per megagram of forage was greatest for spring forage sorghum. Sorghum variety type and trait selection are crucial to minimize differences in forage nutritive value of sorghum forage between seasons and improve the performance of high-producing dairy cows.