Pharmaceuticals (Dec 2023)

Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of <i>Nyctanthes arbor-tristis Linn</i> Phytochemicals

  • Varish Ahmad,
  • Mohammad Imran Khan,
  • Qazi Mohammad Sajid Jamal,
  • Faisal A. Alzahrani,
  • Raed Albiheyri

DOI
https://doi.org/10.3390/ph17010018
Journal volume & issue
Vol. 17, no. 1
p. 18

Abstract

Read online

The leaves, flowers, seeds, and bark of the Nyctanthes arbor-tristis Linn plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool. SwissADME evaluated ADME (adsorption, distribution, metabolism, and excretion) parameters. Arb_E and Beta-sito, natural compounds of the plant, showed significant levels of binding affinity against COX-1, COX-2, PDE4, PDE7, IL-17A, IL-17D, TNF-α, IL-1β, prostaglandin E2, and prostaglandin F synthase. The control drug celecoxib exhibited a binding energy of −9.29 kcal/mol, and among the tested compounds, Arb_E was the most significant (docking energy: −10.26 kcal/mol). Beta_sito was also observed with high and considerable docking energy of −8.86 kcal/mol with the COX-2 receptor. COX-2 simulation in the presence of Arb_E and control drug celecoxib, RMSD ranged from 0.15 to 0.25 nm, showing stability until the end of the simulation. Also, MM-PBSA analysis showed that Arb_E bound to COX-2 exhibited the lowest binding energy of −277.602 kJ/mol. Arb_E and Beta_sito showed interesting ADME physico-chemical and drug-like characteristics with significant drug-like effects. Therefore, the studied natural compounds could be potential anti-inflammatory molecules and need further in vitro/in vivo experimentation to develop novel anti-inflammatory drugs.

Keywords