Sensors (Dec 2022)

Resource Allocation in Downlink VLC-NOMA Systems for Factory Automation Scenario

  • Won-Jae Ryu,
  • Jae-Woo Kim,
  • Dong-Seong Kim

DOI
https://doi.org/10.3390/s22239407
Journal volume & issue
Vol. 22, no. 23
p. 9407

Abstract

Read online

Industry 4.0 requires high-speed data exchange that includes fast, reliable, low-latency, and cost-effective data transmissions. As visible light communication (VLC) can provide reliable, low-latency, and secure connections that do not penetrate walls and are immune to electromagnetic interference; it can be considered a solution for Industry 4.0. The non-orthogonal multiple access (NOMA) technique can achieve high spectral efficiency using the same frequency and time resources for multiple users. It means that smaller amounts of resources will be used compared with orthogonal multiple access (OMA). Therefore, handling multiple data transmissions with VLC-NOMA can be easier for factory automation than OMA. However, as the transmit power is split, the reliability is reduced. Therefore, this study proposed a deep neural network (DNN)-based power-allocation algorithm (DBPA) to improve the reliability of the system. Further, to schedule multiple nodes in VLC-NOMA system, a priority-based user-pairing (PBUP) scheme is proposed. The proposed techniques in VLC-NOMA system were evaluated in terms of the factory automation scenario and showed that it improves reliability and reduces missed deadlines.

Keywords